Gene selection: a Bayesian variable selection approach

نویسندگان

  • Kyeong Eun Lee
  • Naijun Sha
  • Edward R. Dougherty
  • Marina Vannucci
  • Bani K. Mallick
چکیده

UNLABELLED Selection of significant genes via expression patterns is an important problem in microarray experiments. Owing to small sample size and the large number of variables (genes), the selection process can be unstable. This paper proposes a hierarchical Bayesian model for gene (variable) selection. We employ latent variables to specialize the model to a regression setting and uses a Bayesian mixture prior to perform the variable selection. We control the size of the model by assigning a prior distribution over the dimension (number of significant genes) of the model. The posterior distributions of the parameters are not in explicit form and we need to use a combination of truncated sampling and Markov Chain Monte Carlo (MCMC) based computation techniques to simulate the parameters from the posteriors. The Bayesian model is flexible enough to identify significant genes as well as to perform future predictions. The method is applied to cancer classification via cDNA microarrays where the genes BRCA1 and BRCA2 are associated with a hereditary disposition to breast cancer, and the method is used to identify a set of significant genes. The method is also applied successfully to the leukemia data. SUPPLEMENTARY INFORMATION http://stat.tamu.edu/people/faculty/bmallick.html.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Individual adaptation: an adaptive MCMC scheme for variable selection problems

The increasing size of data sets has lead to variable selection in regression becoming increasingly important. Bayesian approaches are attractive since they allow uncertainty about the choice of variables to be formally included in the analysis. The application of fully Bayesian variable selection methods to large data sets is computationally challenging. We describe an adaptive Markov chain Mo...

متن کامل

Identification of DNA regulatory motifs using Bayesian variable selection

MOTIVATION Understanding the mechanisms that determine gene expression regulation is an important and challenging problem. A common approach consists of identifying DNA-binding sites from a collection of co-regulated genes and their nearby non-coding DNA sequences. Here, we consider a regression model that linearly relates gene expression levels to a sequence matching score of nucleotide patter...

متن کامل

Bayesian Shrinkage Variable Selection April 25 , 2008

We introduce a new Bayesian approach to the variable selection problem which we term Bayesian Shrinkage Variable Selection (BSVS ). This approach is inspired by the Relevance Vector Machine (RVM ), which uses a Bayesian hierarchical linear setup to do variable selection and model estimation. RVM is typically applied in the context of kernel regression although it is also suitable in the standar...

متن کامل

Penalized Model-Based Clustering with Application to Variable Selection

Variable selection in clustering analysis is both challenging and important. In the context of modelbased clustering analysis with a common diagonal covariance matrix, which is especially suitable for “high dimension, low sample size” settings, we propose a penalized likelihood approach with an L1 penalty function, automatically realizing variable selection via thresholding and delivering a spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2003